Lithium Titanate Countered By Lithium Iron Phosphate Could Make Lithium-ion Batteries Cheaper

Posted: Feb 17 2016, 1:53am CST | by , in News | Latest Science News


Lithium Titanate Countered by Lithium Iron Phosphate Could Make Lithium-ion batteries Cheaper
University of Eastern Finland

New research identifies new cheaper materials for next generation Lithium-ion batteries.

Batteries are a huge problem, holding consumer electronics and electric cars back. Scientists around the world work on improving that weak link. Researchers in Finland found new materials for next generation Lithium-ion batteries.

The materials currently used in Li-ion batteries are expensive, many of them, like lithium cobalt oxide (belonging to the EU Critical Raw Materials, CRMs), are difficult to handle and dispose of. Additionally, batteries using these materials have relatively short lifetimes.

New novel materials are being developed for next generation Li-ion batteries. One promising anode-cathode material pair is lithium titanate countered by lithium iron phosphate. The raw materials for these components are readily available; and they are safe to use, and easy to dispose of or recycle. And most importantly, batteries manufactured using these materials have significantly longer cycle and calendar lifetimes compared to the current battery technology. However, the main problem of these new materials is their low electric conductivity.

“The electric conductivity problem can be solved by producing nano sized, high surface area crystalline materials, or by modifying the material composition with highly conductive dopants. We have succeeded in doing both for lithium titanate (LTO) in a simple, one-step gas phase process developed here at the UEF Fine Particle and Aerosol Technology Laboratory,” says Researcher Tommi Karhunen

A study by University of Eastern Finland scientists opens up new electricity storage applications. The results were published recently in the Journal of Alloys and Compounds, which has a large audience especially in Asian countries, where most of the Li-ion battery manufacturing takes place currently.

“The electrochemical performance of Li-ion batteries made out of the above mentioned material is very promising. The electrochemical properties were studied in collaboration with Professor Ulla Lassi’s group from Kokkola University Consortium Chydenius. The most important applications lie in batteries featuring, for example, fast charging required for electric buses, or high power needed for hybrid and electric vehicles,” says Professor Jorma Jokiniemi, Director of the Fine Particle and Aerosol Technology Laboratory.

Paper: Karhunen T, Välikangas J, Torvela T, Lähde A, Lassi U, Jokiniemi J. Effect of doping and crystallite size on the electrochemical performance of Li4Ti5O12. Journal of Alloys and Compounds (2016) 659:1342. DOI: 10.1016/j.jallcom.2015.10.125

You May Like


The Author

<a href="/latest_stories/all/all/2" rel="author">Luigi Lugmayr</a>
Luigi Lugmayr () is the founding chief Editor of I4U News and brings over 15 years experience in the technology field to the ever evolving and exciting world of gadgets. He started I4U News back in 2000 and evolved it into vibrant technology magazine.
Luigi can be contacted directly at




Leave a Comment

Share this Story

Follow Us
Follow I4U News on Twitter
Follow I4U News on Facebook

You Also Like


Read the Latest from I4U News