A Chemical To Help Assess Past Changes To Antarctic Sea Ice

Posted: Aug 30 2016, 10:16pm CDT | by , in News | Latest Science News


A Chemical to Help Assess Past Changes to Antarctic Sea Ice
Photo Credit: Getty Images

A chemical, the source of which has been traced to a widespread and commonly occurring constituent of micro algae inhabiting Antarctic sea ice, can help scientists assess historical changes to the frozen continent, says a study.

It could also potentially be used to demonstrate past alterations to glaciers and ice shelves caused by climatic changes, the study published in the journal Nature Communications suggests.

"In addition to allowing us to unlock historical changes to Antarctic sea ice, our new method also has the potential to provide further insights into other critical climatic features that may have changed in the past," said the study's lead author Simon Belt, Professor of Chemistry at Plymouth University in Britain.

"Indeed, sea ice around the Antarctic coastline is strongly influenced by nearby glaciers and ice shelves, both of which contribute to increased global sea level when they melt. Therefore, our new approach may also permit a much broader spectrum of climatic changes to be unravelled in the future," Belt noted.

The new method builds on an existing technique, also developed by Plymouth University over the last 10 years, which identified a means by which scientists could measure changes to sea ice in the Arctic.

The previous technique is based on the presence of IP25, a lipid chemical made solely by micro-algae that live in the bottom of Arctic sea ice.

When the ice melts, the algae and its lipids fall into the sediments which can be recovered, dated and analyzed.

IP25 does not exist in the Antarctic, but the scientists reported discovery of a related chemical in the Southern Ocean.

Analysis of surface sediments covering different regions of Antarctica showed the presence of IPSO25 in nearly all cases.

Its source, Berkeleya adeliensis, is a widespread and commonly occurring constituent of micro algae inhabiting Antarctic sea ice, which explains why IPSO25 is so common in the sediments.

"The identification of IPSO25 in the Antarctic sea ice diatom Berkeleya adeliensis likely ensures that future interpretations of the sedimentary occurrence of this sea ice proxy can be made with greater confidence and in more detail," the study said.

You May Like


The Author

<a href="/latest_stories/all/all/59" rel="author">IANS</a>
The Indo-Asian News Service (IANS) was established in 1986, initially to serve as an information bridge between India and its thriving Diaspora in North America. Now IANS is a full-fledged wire agency, putting out news 24x7 from around the world.




Leave a Comment

Share this Story

Follow Us
Follow I4U News on Twitter
Follow I4U News on Facebook

Read the Latest from I4U News