Method To Control High Energy Electrons Comes A Step Closer

Posted: Oct 3 2016, 6:27am CDT | by , in Latest Science News


This story may contain affiliate links.

Method to Control High Energy Electrons comes a Step closer
Professor Richard Palmer Credit: University of Birmingham

In a promising step towards being able to manipulate and control the behavior of high energy, or 'hot', electrons, scientists have, for the first time, identified a method of visualizing the quantum behavior of electrons on a surface.

Hot electrons are necessary for a number of processes and the implications of being able to manipulate their behavior are far-reaching -- from enhancing the efficiency of solar energy, to improving the targeting of radiotherapy for cancer treatment.

"Hot electrons are essential for a number of processes -- certain technologies are entirely reliant on them. But they're notoriously difficult to observe due to their short lifespan, about a millionth of a billionth of a second," said one of the researchers Peter Sloan from University of Bath in England.

"This visualization technique gives us a really new level of understanding," Sloan noted.

In the experiment, a Scanning Tunneling Microscope was used to inject electrons into a silicon surface, decorated with toluene molecules. As the injected charge propagated from the tip, it induced the molecules to react and 'lift off' from the surface.

By measuring the precise atomic positions from which molecules departed on injection, the team were able to identify that electrons were governed by quantum mechanics close to the tip, and then by more classical behavior further away.

The team found that the molecular lift-off was "suppressed" near the point of charge injection, because the classical behavior was inhibited.

The number of reactions close to the tip increased rapidly until reaching a radius, up to 15 nanometers away, before seeing relatively slow decay of reactions beyond that point more in keeping with classical behavior.

This radius, at which the behavior changes from quantum to classical, could be altered by varying the energy of the electrons injected, said the study published in the journal Nature Communications.

"When an electron is captured by a molecule of toluene, we see the molecule lift off from the surface -- imagine the Apollo lander leaving the moon's surface. By comparing before and after images of the surface we measure the pattern of these molecular launch sites and reveal the behavior of electrons in a manner not possible before," Professor Richard Palmer from the University of Birmingham explained.

This story may contain affiliate links.


Find rare products online! Get the free Tracker App now.

Download the free Tracker app now to get in-stock alerts on Pomsies, Oculus Go, SNES Classic and more.

Latest News


The Author

<a href="/latest_stories/all/all/59" rel="author">IANS</a>
The Indo-Asian News Service (IANS) was established in 1986, initially to serve as an information bridge between India and its thriving Diaspora in North America. Now IANS is a full-fledged wire agency, putting out news 24x7 from around the world.




comments powered by Disqus