Satellite Reveals Dramatic State Earth's Largest Groundwater Basins

Posted: Jun 17 2015, 2:36am CDT | by , in News | Technology News


Satellite Reveals Dramatic State Earth's largest Groundwater Basins

About one third of Earth's largest groundwater basins are being rapidly depleted by human consumption says new Study using data from the NASA's Gravity Recovery and Climate Experiment (GRACE) satellites.

Water is life. Without water there is no life. Humans in the Western world forget that often, exception are people living in drought areas like California. They are reminded how valuable water is every day.

According to two new studies led by the University of California, Irvine (UCI), using data from NASA's Gravity Recovery and Climate Experiment (GRACE) satellites, water shortage is not just a topic of draught areas, but also could soon become a big problem world-wide as  one third of Earth's largest groundwater basins are being rapidly depleted by human consumption.

"Available physical and chemical measurements are simply insufficient," said UCI professor and principal investigator Jay Famiglietti, who is also the senior water scientist at NASA's Jet Propulsion Laboratory in Pasadena, California. "Given how quickly we are consuming the world’s groundwater reserves, we need a coordinated global effort to determine how much is left."

The studies are the first to comprehensively characterize global groundwater losses with data from space, using readings generated by NASA’s twin GRACE satellites. GRACE measures dips and bumps in Earth’s gravity, which are affected by the mass of water. In the first paper, researchers found that 13 of the planet's 37 largest aquifers studied between 2003 and 2013 were being depleted while receiving little to no recharge.

Water Basins

Eight were classified as "overstressed," with nearly no natural replenishment to offset usage. Another five were found to be "extremely" or "highly" stressed, depending upon the level of replenishment in each. Those aquifers were still being depleted but had some water flowing back into them.

The most overburdened aquifers are in the world’s driest areas, where populations draw heavily on underground water. Climate change and population growth are expected to intensify the problem.

"What happens when a highly stressed aquifer is located in a region with socioeconomic or political tensions that can’t supplement declining water supplies fast enough?" asked Alexandra Richey, the lead author on both studies, who conducted the research as a UCI doctoral student. "We’re trying to raise red flags now to pinpoint where active management today could protect future lives and livelihoods."

The research team -- which included co-authors from NASA, the National Center for Atmospheric Research, National Taiwan University and UC Santa Barbara -- found that the Arabian Aquifer System, an important water source for more than 60 million people, is the most overstressed in the world.

The Indus Basin aquifer of northwestern India and Pakistan is the second-most overstressed, and the Murzuk-Djado Basin in northern Africa is third. California’s Central Valley, used heavily for agriculture and suffering rapid depletion, was slightly better off, but was still labeled highly stressed in the first study.

"As we’re seeing in California right now, we rely much more heavily on groundwater during drought," said Famiglietti. "When examining the sustainability of a region’s water resources, we absolutely must account for that dependence."

In a companion paper published today in the same journal, the scientists conclude that the total remaining volume of the world’s usable groundwater is poorly known, with estimates that often vary widely. The total groundwater volume is likely far less than rudimentary estimates made decades ago. By comparing their satellite-derived groundwater loss rates to what little data exist on groundwater availability, the researchers found major discrepancies in projected "time to depletion." In the overstressed Northwest Sahara Aquifer System, for example, time to depletion estimates varied between 10 years and 21,000 years.

"We don’t actually know how much is stored in each of these aquifers. Estimates of remaining storage might vary from decades to millennia," said Richey. "In a water-scarce society, we can no longer tolerate this level of uncertainty, especially since groundwater is disappearing so rapidly." 

The study notes that the dearth of groundwater is already leading to significant ecological damage, including depleted rivers, declining water quality and subsiding land.

Groundwater aquifers are typically located in soils or deeper rock layers beneath Earth’s surface. The depth and thickness of many large aquifers make it tough and costly to drill or otherwise reach bedrock and understand where the moisture bottoms out. But it has to be done, the authors say.

The papers have been published in the journal Water Resources Research here and here.

You May Like


The Author

<a href="/latest_stories/all/all/2" rel="author">Luigi Lugmayr</a>
Luigi Lugmayr () is the founding chief Editor of I4U News and brings over 15 years experience in the technology field to the ever evolving and exciting world of gadgets. He started I4U News back in 2000 and evolved it into vibrant technology magazine.
Luigi can be contacted directly at




Leave a Comment

Share this Story

Follow Us
Follow I4U News on Twitter
Follow I4U News on Facebook

You Also Like


Read the Latest from I4U News